
Monte Carlo simulation in the semi-grand canonical ensemble as a 'thermodynamic' reverse

Monte Carlo technique, with application to a polymer melt

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 335221

(http://iopscience.iop.org/0953-8984/19/33/335221)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 04:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 335221 (8pp) doi:10.1088/0953-8984/19/33/335221

Monte Carlo simulation in the semi-grand canonical
ensemble as a ‘thermodynamic’ reverse Monte Carlo
technique, with application to a polymer melt

Frederick E Bernardin III and Gregory C Rutledge1

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

E-mail: rutledge@mit.edu

Received 13 March 2007
Published 4 July 2007
Online at stacks.iop.org/JPhysCM/19/335221

Abstract
We describe the use of Monte Carlo simulation in the semi-grand canonical
ensemble (SGMC) to analyse and interpret experimental data for non-
equilibrium states of matter such as glasses and many processed polymer
melts. Experiments that provide information about atomic-level ordering are
amenable to this approach. Closure of the inverse problem of determining
the structural detail from limited data is achieved by selecting the lowest-free-
energy ensemble of configurations that reproduces the experimental data. The
free energy is calculated using the thermodynamic potential of the appropriate
semi-grand canonical ensemble defined by the experimental data. To illustrate
the method we examine uniaxially oriented polyethylene melts of average chain
length C78. The simulation results are analysed for features not explicitly
measured, such as the density, torsion angle distribution, and free energy, to
understand more fully the underlying features of these non-equilibrium states.

1. Introduction

Reverse Monte Carlo (RMC) was introduced in 1988 by Pusztai and McGreevy [1]. Since that
time, the method has produced many useful contributions to the interpretation of structural
measurements, especially in the interpretation of diffraction experiments [2]. Despite its
successes, users of RMC must continually address questions of non-uniqueness of the solutions
thus generated. The non-uniqueness as well as an element of arbitrariness arises, in part,
because of the incorporation of user-defined weightings into the acceptance criterion. By
formulating the inverse problem strictly in terms of thermodynamic variables, we incorporate
experimental data into an ensemble that provides a thermodynamically consistent resolution to
the problem of uniqueness. The semi-grand canonical Monte Carlo (SGMC) method obtains
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closure to the inverse problem through the selection of the ensemble of states with the lowest
free energy.

2. Description of the SGMC method

A formalism for the incorporation into a Monte Carlo simulation of experimental data was
presented by Rutledge [3], based on the earlier work of Briano and Glandt for the treatment of
polydisperse systems of differentiable particles in the semi-grand canonical ensemble [4]. The
semi-grand canonical ensemble is well suited to address the problem of structure because it
allows an otherwise homogeneous system to be differentiated in terms of measurable structural
characteristics. In the traditional language of thermodynamics, the system is expressed as a
mixture of isomers whose origins are physical rather than chemical; the concentrations of such
physical isomers are known, for example, from experimental measurements. The resulting
method correctly interprets the intensities of physical measurements as information about the
concentrations of physical species in the system, and casts the inverse problem as one of finding
the (thermodynamically rigorous) potentials responsible for the observed concentrations.
Although similar in implementation to the empirical potential methods described by Soper [5]
and Lyubatsev and Laaksonen [6], the potentials determined by SGMC are only as approximate
as the physical isomers to which they apply, or the measurements by which the potentials are
iteratively determined. To emphasize this fact, we refer to the method simply as a semi-grand
canonical Monte Carlo (SGMC) simulation. As demonstrated in [3], the potential determined
by SGMC can in certain circumstances be the ‘interatomic potential’, which usually constitutes
a whole or part of the ‘force field’ used to compute the configuration energy U(rN ); more
generally, the potential determined by SGMC represents a physical field conjugate to the
structural entities measured by the experimental data, and may supplement any force field
invoked a priori.

To incorporate information about the physical isomers, we expand the canonical ensemble
to include the set of normalized experimental values {〈xi〉} and its thermodynamic conjugate
variables {μi} in the Metropolis acceptance criterion as:

pacc = min

{
1, exp

(
−β

[
U(rN )new − U(rN )old −

K∑
i=1

μi (〈xi 〉new − 〈xi 〉old)

])}
. (1)

The form of equation (1) is important, because it ensures the existence of a single ensemble
that minimizes the free energy of the ensemble characterized by constant N , V , T and {μi }.

The ability to make this assertion is dependent on the form of the thermodynamic potential.
The necessary form of additional constraints is:

ln(p) ∝ βμi〈xi〉 (2)

where xi is some observable quantity and λi = −βμi is an iteratively determined Lagrangian
multiplier. This particular form was shown by Jaynes [7] to be the least restrictive solution
to the problem of maximizing entropy in a system constrained to reproduce {〈xi〉}. Any other
form adds some degree of unnecessary constraint to the system, by incorporating information
that is not contained in the experimental measurement.

We may now ask, ‘does the maximum entropy probability distribution given in equation (2)
lead to equation (1) as the correct description for an interacting system?’ Guiaşu [8] has shown
that an arbitrary weighting of each of the states does not affect the ability to find the most likely
solution, and that this solution would now maximize the weighted entropy.

Because our weighting is the Boltzmann factor for each configuration, Guiaşu’s weighted
entropy is equal and opposite to the free energy of the system. Thus, the problem of entropy
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maximization in the non-interacting system becomes a problem of free-energy minimization in
the interacting system, where each state is weighted by its configuration energy U(rN ). The
minimum-free-energy solution will be of the form:

ln(p) ∝ −β(U(rN ) −
K∑

i=1

μi 〈xi〉) (3)

leading directly to the Metropolis criterion given in equation (1). This formulation in turn leads
to a unique ensemble of configurations that reproduces the observed experiment.

The process of iteratively obtaining the values for μi is a specific example of a ‘potential
determination’ method. Tóth and Baranyai make a very useful comparison of potential
determination methods and the RMC method for producing a structure from experimental
data [9]. They conclude that potential determination methods are ‘very promising’ once they
can incorporate incomplete measurements and measurement error. Below, we describe our
ideas towards the resolution of these issues, based upon formulation of the problem as an
SGMC simulation.

The ‘problem’ of incomplete measurements is only a problem insofar as one demands that
the solution be constrained to data that does not (yet) exist. The incomplete portion of any
measurement is treated as any other unmeasured characteristic of the system; it is otherwise
unconstrained and determined through the minimization of the free energy. A more complete
knowledge of the experimental results can always be incorporated using additional constraints
as additional knowledge becomes available. Below, we use an incomplete representation of the
orientation distribution function (ODF) to obtain information about the system. Specifically,
we employ measurements of the birefringence, which provides only the second moment of the
orientation distribution, yet we can obtain a prediction of the full ODF, using the results of the
SGMC simulation.

The issue of how to interpret measurement error was answered by Jaynes [7]. He points out
that the fluctuation of a system and the experimental uncertainty of a measurement are two very
different things. The first is a well-defined quantity that is intrinsic to the system; the second
depends on external considerations and varies accordingly. The determination of the value of
the potential relies only on the intrinsic properties of the system; its uncertainty is tied to the
experimental error. This is a fundamental point—the physics of the problem do not depend on
the accuracy of the measurements. In an SGMC simulation, given a set of measured values 〈xi 〉,
the corresponding potentials μi must be determined iteratively. Several numerical procedures
have been described for this purpose [3, 10, 11]. The termination of these procedures is dictated
by the accuracy with which μi must be determined in order to ensure that the simulated 〈xi〉sim

reproduces the measured values of 〈xi〉exp to within the experimental error, δi . That is:

(〈xi〉sim − 〈xi 〉exp
)2 � δ2

i . (4)

Finally, figure 1 shows a schematic of the SGMC method that summarizes the steps discussed
above.

In closing this section, we assert that the determination of a unique lowest-free-energy
solution requires a method such as SGMC, which captures the intrinsic fluctuations of the
system. If other factors such as the ease of modelling or computational expense are important,
one may very well choose an alternative method such as the traditional RMC model. However,
this should be done with the understanding that thermodynamic rigor is being sacrificed
for other benefits, such as avoiding the need to run potentially time-consuming iterative
determinations of the potential, or fully atomistic energy calculations.
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Figure 1. Schematic of the SGMC method.

3. Simulations

In the illustrative example considered here, the observable quantity x is the second Legendre
coefficient P2(cos θ) = (3 cos2 θ − 1)/2 of the angle θ of the structural unit with respect to
the axis of orientation. This value is proportional to the birefringence for a uniaxially oriented
system. Using a united atom polyethylene force field described elsewhere [12], we have run
simulations on polyethylene chains with average size C78. The correct form of the probability
density follows from equation (3):

ln(p) ∝ −β(U(r N ) − μ〈P2(cos θ)〉). (5)

We have run simulations for a series of values of μ under conditions described
elsewhere [13], to obtain the functional form of the orientation potential, as well as the changes
in other structural properties. Thus, no iterative procedure was required in this example; the
value of μ required for any value of 〈P2(cos θ)〉 may be estimated by interpolation of the results
provided.

4. Results and discussion

The potential μ is the conjugate thermodynamic variable to 〈P2(cos θ)〉. Using the relationship
between these two variables presented in figure 2, we report all subsequent structural
dependences using 〈P2(cos θ)〉 as the independent variable.

Figure 3 shows the density of the system as a function of orientation. The density of
the system is constant for orientations less than approximately 〈P2(cos θ)〉 = 0.1. For more
oriented systems, the minimization of free energy is accomplished through changes in the
molecular structure that produce a denser melt. By correlating this phenomenon with other
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Figure 2. Orientation of C78 PE molecules with increasing orientation potential.

Figure 3. Density of C78 PE molecules as a function of potential.

structural information, we can gain a deeper understanding of the different mechanisms for
orientation.

Considering figures 4 and 5 together, we can see that each describes behaviour consistent
with the observation of two different regimes of orientation, with a transition that occurs around
〈P2(cos θ)〉 = 0.1. Figure 4 shows that the percentage of trans bonds in the molecule remains
constant below this transition. This means that, although the molecules are being oriented,
the shape of the molecule itself is not disturbed; that is, the principle axes of the molecule
are rotated. Above this transition, the percentage of trans bonds increases, which indicates
a deformation of the molecules to more extended conformations. Figure 5 tells a similar
story: below the transition, the mean-square end-to-end distance is unchanged, while at higher
orientation it increases.
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Figure 4. Fraction of trans bonds for the PE chains as a function of orientation.

Figure 5. Relative mean-square end-to-end distance of the molecules as a function of orientation.
R2

0 is the isotropic (zero potential) mean-square end-to-end distance.

From a simple birefringence experiment, we now have a much more complete and
interesting story. The initial orientation of the molecule is achieved through the reorientation
of the entire molecule without any changes to its conformation. This allows orientation
up to 〈P2(cos θ)〉 = 0.1, with the only penalty being a loss of orientational entropy.
Further orientation can only be obtained by unraveling the molecule to produce more
highly extended conformations, which comes at a cost in both internal energy and
entropy. However, these highly extended conformations are able to pack more densely
than the equilibrium conformations, and thereby recover some benefits through favourable
intermolecular interactions. The parallel increases in figures 3–5 show how the increase in
density correlates with the deformation of the molecules.
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Figure 6. Work of orientation as a function of orientation. Values were determined using the self-
consistent histogram method [14].

Figure 6 shows the change in free energy as the molecules orient. Rotation of the principle
axes of entire molecules is achieved through relatively small amounts of work on the system.
Subsequent deformation of the molecules requires larger amounts of work on the system. These
values are important because they represent a lower bound on the work required to reach a
particular orientation. If the experiment (in this case birefringence) captures the important
characteristics of the molecule, the work put into the system (discounting losses) will be
reflected by the relationship in figure 6. Significantly, the relationship between work and
orientation can only be determined using a thermodynamic method such as SGMC.

5. Conclusion

We have provided a description of the SGMC method, which uses a thermodynamic basis to
incorporate experimental measurements, providing a unique, minimum-free-energy solution to
the inverse problem of determining the corresponding system microstructure. The method can
be performed using incomplete information about a distribution, as in the above example using
only one of the moments of the distribution.

We performed the simulation of PE molecules of average size C78 and demonstrated the
ability to extract structural changes not revealed directly by the experimental measurement of
orientation. The structural changes were investigated through the analysis of changes in, for
example, density, molecular size and torsion distributions. The simulated systems indicate that
the initial response of the polyethylene melt is a reorientation of entire molecules, followed
by the distortion of the molecules to produce a denser melt. We also obtain the work required
to orient the molecule, which is possible because the SGMC method is thermodynamically
consistent. We propose this method to supplement conventional RMC methods in cases where
the necessity of thermodynamic rigor justifies the higher computational cost.
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